

28

Fractional solubility of iron in mineral dust aerosols over coastal

2	Namibia: a link with marine biogenic emissions?
3	
4	Karine Desboeufs ¹ , Paola Formenti ¹ , Raquel Torres-Sánchez ^{2,3} , Kerstin Schepanski ^{4,\$} , Jean-
5	Pierre Chaboureau ⁵ , Hendrik Andersen ^{6,7} , Jan Cermak ^{6,7} , Stefanie Feuerstein ⁴ , Benoit Laurent ¹ ,
6	Danitza Klopper ^{8,*} , Aandreas Namwoonde ⁹ , Mathieu Cazaunau ² , Servanne Chevaillier ² , Anaïs
7	Feron ^{1,%} , Cécile Mirande-Bret ¹ , Sylvain Triquet ¹ , and Stuart J. Piketh ⁸
8	
9	
10	¹ Université Paris Cité and Université Paris Est Créteil, CNRS, LISA, F-75013 Paris, France
11	² Université Paris Est Créteil and Université Paris Cité, CNRS, LISA, F-94010 Créteil, France
12	³ CIQSO, Robert H. Grubbs Building, University of Huelva, Campus El Carmen, E21071 Huelva, Spain
13	⁴ TROPOS, Leipzig, Germany
14	⁵ Laboratoire d'Aérologie (LAERO), Université de Toulouse, CNRS, UT3, IRD Toulouse, France
15	⁶ Institute of Meteorology and Climate Research, Karlsruhe Institute of Technology (KIT), Karlsruhe,
16	Germany
17	⁷ Institute of Photogrammetry and Remote Sensing, Karlsruhe Institute of Technology (KIT), Karls-
18	ruhe, Germany
19	⁸ North-West University, School for Geo- and Spatial Sciences, Potchefstroom, South Africa
20	⁹ SANUMARC, University of Namibia, Henties Bay, Namibia
21	
22	* Now at University of Limpopo, Department of Geography and Environmental Studies, Sovenga,
23	South Africa
24	\$ Now Institute of Meteorology, Freie Universität Berlin, Berlin, Germany
25	% Now at Université Paris-Saclay, INRAE, AgroParisTech, UMR ECOSYS, Palaiseau, France
26	
27	Corresponding author: paola.formenti@lisa.ipsl.fr

41

Abstract

Mineral dust is the largest contributor to elemental iron in the atmosphere, and, by deposition, to the oceans, where elemental iron is the main limiting nutrient. Southern Africa is an important source at the regional scale, and for the Southern Ocean, however limited knowledge is currently available about the fractional solubility of iron from those sources, as well as on the atmospheric processes conditioning its dissolution during deposition.

This paper presents the first investigation of the solubility of iron in mineral dust aerosols from 176 filter samples collected at the Henties Bay Aerosol Observatory (HBAO), in Namibia, from April to December 2017. During the study period, 10 intense dust events occurred. Elemental iron reached

December 2017. During the study period, 10 intense dust events occurred. Elemental iron reached peak concentrations as high as 1.5 µg m⁻³, significantly higher than background levels. These events are attributed to wind erosion of natural soils from the surrounding gravel plains of the Namib desert. The composition of the sampled dust is found to be overall similar to that of aerosols from northern

Africa, but characterised by persistent and high concentrations of fluorine, which are attributed to

42 fugitive dust from mining activities and soil labouring for construction.

43 The fractional solubility of Fe (%SFe) for both the identified dust episodes and background conditions ranged between 1.3 to 20 %, in the range of values previously observed in the remote Southern 44 Ocean. Even in background conditions, the iron fractional solubility was correlated to aluminium and 45 silicon solubility. The solubility was lower between June and August, and increased from September 46 47 onwards, during the austral spring months. The relation with measured concentrations of particulate 48 MSA (methanesulfonic acid), solar irradiance and wind speed suggests a possible two-way interaction whereby marine biogenic emissions from the coastal Benguela upwelling to the atmosphere would 49 50 increase the solubility of iron-bearing dust, according to the photo-reduction processes proposed by 51 Johansen and Key (2006). The subsequent deposition of soluble iron could act to further enhance marine biogenic emissions. This first investigation points to the west coast of southern Africa as a 52 complex and dynamic environment with multiple processes and active exchanges between the at-53 mosphere and the Atlantic Ocean, requiring further research. 54

55

56

57

Keywords: aerosols, mineral dust, water-soluble Fe, atmospheric processing, marine biogenic emissions

1. Introduction

- 59 Through the processes of atmospheric transport and deposition, mineral dust is known to provide
- 60 nutrients and metals to the terrestrial and marine ecosystems (Hooper et al., 2019; Ventura et al.,
- 61 2021). Amongst those, mineral dust provides iron (Jickells et al., 2005), which plays a major role for
- 62 the primary productivity of the nutrient-limited oceans, modulating the marine carbon cycle (Hooper
- et al., 2019) as well as that of key continental ecosystems such as the Amazon rainforest (Reichholf,
- 64 1986).
- 65 To date, much attention has been paid to the soluble Fe in mineral dust emitted from arid and semi-
- arid areas in the northern Hemisphere, in particular the Saharan and Chinese deserts (e.g. Baker et
- 67 al., 2006; Paris et al., 2010; Takahashi et al., 2011; Rodriguez et al., 2021), where emissions are the
- 68 most intense (Tegen and Schepanski, 2009).
- 69 Nonetheless, the southern Hemisphere accounts for approximately 10% of the global atmospheric
- 70 dust loading (Kok et al., 2017). Large sources are found in southern Africa, mostly in Namibia (Kala-
- hari and Namib deserts, Etosha Pan), numerous ephemeral riverbeds along the Namibian coastline)
- 72 and Botswana (Makgadikgadi Pan; Prospero et al., 2002; Bryant et al., 2007; Mahowald et al., 2003;
- Ginoux et al., 2012; Vickery and Eckardt, 2013; Von Holdt et al., 2017).
- 74 Previous research has shown that the long-range transport of dust emitted from southern African
- 75 sources can reach the south-eastern Atlantic and the Indian Oceans (Swap et al., 1996; Jickells et
- 76 al., 2005; Bhattachan et al., 2012; 2015; Ito and Kok, 2017). In particular, Gili et al. (2022) demon-
- 77 strated recently that mineral dust from Namibia can be transported across the Southern Ocean to
- 78 eastern Antarctica. Furthermore, the research by Dansie et al. (2022) has suggested that mineral dust
- 79 from Namibia could dominate the atmospheric deposition to the coastal Benguela Upwelling System
- 80 (BUS), where biomass burning aerosols, a significant source of soluble Fe to the Southern and Indian
- Oceans (Hamilton et al., 2021; Ito et al., 2021; Liu, et al., 2022), are limited by atmospheric stratifica-
- tion (Formenti et al., 2019; Redemann et al., 2021).
- There is, however, very little data available on the concentrations and composition of soluble Fe in
- dust aerosols from southern Africa, both near the sources and over the oceans. Previous research in
- Namibia focussed on soils and sediments (Dansie et al., 2017a; 2017b; Kangueehi, 2021). The At-
- 86 Iantic Meridional Transect (AMT) cruise programme conducted recurrent observations between Oc-
- tober and March in the South Atlantic Ocean (Baker et al., 2013), while Heimburger et al. (2013) and
- 88 Gao et al. (2013) report on sparse measurements of deposited aerosols and in rainwaters over the
- 89 Southern Indian Ocean.
- 90 Within this context, this paper investigates the fractional solubility of Fe in samples of atmospheric
- 91 aerosol particles smaller than 10 μm in diameter collected in 2017 at the Henties Bay Aerosols Ob-
- 92 servatory (HBAO; 22.09°S, 14.26°E) on the Namibian coast. In section 2 we outline the experimental

and analytical methodology for elemental and water-soluble analysis of ions and metals, including iron, obtained by Inductively Coupled Plasma (ICP) analysis. We also provide the definition of fractional solubility and method for estimating the total dust mass. We introduce the supporting tools used to evaluate the source regions of the collected mineral dust, their pathways during transport, and the presence of fog, a recurrent feature on coastal Namibia favouring multi-phase ageing processes. Section 3 provides the results of the analysis. We present the iron soluble concentrations and solubility, and explore their links to the load, emission area and transport of mineral dust, as well as atmospheric processing. Section 4 discusses the observations, suggesting that the fractional solubility of iron in the Namibian dust is higher when the particulate MSA, a tracer of marine biogenic emissions, is also detected in highest concentrations. This points to the photo-oxidation of DMS as a process for increasing the dust solubility, and suggests a possible positive feedback loop of the iron fertilisation by dust to the ocean. Section 5 summarizes the findings and suggests directions for future research.

2. Methodology

2.1. Study area

The Henties Bay Aerosol Observatory (HBAO, 22.09°S, 14.26°E; http://www.hbao.cnrs.fr/, last access: 10 October 2022) is located at the Sam Nujoma Marine and Coastal Resources Research Centre (SANUMARC) of the University of Namibia in Henties Bay, Namibia (**Fig 1**).

Fig 1. Location of Henties Bay Aerosol Observatory (HBAO, red star) and main dust source regions (© Google Maps). The position of Walvis Bay (blue dot), the major harbour in the area, and the Wlotzkasbaken meteorological station (blue star) are also indicated.

respectively.

115 116 Three kilometers to the south of the University campus hosting HBAO is the small town of Henties 117 Bay, with no industrial activity and very little traffic, and approximately 170 km north from Walvis Bay, 118 the major harbour in Namibia. Directly east of HBAO are the Namibian gravel plains, which are one 119 of the dominant features of the Namib desert together with the sand dunes. Approximately 100 m to 120 the north is the Omaruru riverbed, one of the coastal sources of mineral dust identified by Vickery and 121 Eckardt (2013). 122 Our previous results show that, at the surface level, the atmosphere at HBAO is a receptor of different 123 air masses dominated by marine aerosols, but also the seasonal occurrence of light-absorbing aerosols from biomass burning or pollution in northern wind regimes, and mineral dust detected episodi-124 cally from various wind directions (Formenti et al., 2018; Klopper et al., 2020, hereafter KL20). 125 126 2.2. Sample collection and analysis 127 Aerosol particles smaller than 10 µm in aerodynamic diameter (PM₁₀) were collected by an automated sampler (model Partisol Plus 2025i, Thermo Fisher Scientific, Waltham, MA USA) on 47 mm What-128 129 man Nuclepore polycarbonate filters (1-µm pore size). The air was drawn through a certified sampling 130 inlet (Rupprecht and Patashnick, Albany, New York, USA) located at approximately 30 m above 131 ground and operated at a flow rate of 1 m³ h⁻¹. Samples were collected for 9 hours during the daytime 132 (from 9:00 to 18:00 UTC time) and night-time (21:00 to 06:00 UTC time) for 12 non-consecutive weeks 133 from April to December 2017 (7-14 April, 26 April-3 May, 19-26 May, 07-14 July, 2-9 August, 15-22 August, 18-25 September, 02-09 October, 31 October-7 November, 13-20 November, 28 November-134 135 04 December, 12-19 December). In total, 176 samples (including 13 blanks, one per week of sampling) were collected. 136 137 The elemental analysis of 24 elements from Na to Pb and including some major tracers of mineral 138 dust (Fe, Al and Si) was performed at the LISA laboratory by Wavelength-dispersive X-ray fluorescence (WD-XRF) using a PW-2404 spectrometer (Panalytical, Almelo, Netherlands), as detailed by 139 140 KL20. The total mass concentration per element x will be referred to as Tx. The measured elemental concentrations are used to calculate the estimated dust mass (EDM) ac-141 cording to Lide (1992) as 142 143 $EDM = 1.12 \times \{1.658 \times [nss-Mg] + 1.889 \times [Al] + 2.139 \times [Si] + 1.399 \times [nss-Ca] + 1.668 \times [Ti] + 1.582$ $x [Mn] + (0.5 \times 1.286 + 0.5 \times 1.429 + 0.47 \times 1.204) \times [Fe]$ 144 (1) 145 146 where, as explained by KL20, nss-Mg and nss-Ca represent the non-sea salt fractions of Mg and Ca,

148 The analysis of the water-soluble fraction was also performed at LISA. Individual filters were placed 149 in 20 mL of ultrapure water (MilliQ® 18.2 MΩ.cm) for 30 minutes. The solution was then divided into 150 two sub-samples. One half was analysed by Ion chromatography (IC) using a Metrohm IC 850 device 151 equipped with a column MetrosepA supp 7 (250/4.0 mm) for anions and with a Metrosep C4 (250/4.0 152 mm) for cations. The IC analysis provided the concentrations of the following water-soluble ions: formate, acetate, MSA (methanesulfonic acid), Cl-, NO₃-, SO₄²⁻, oxalate, Na+, NH₄+, K+, Ca²⁺ and Mg²⁺. 153 154 A calibration with certified standard multi-ions solutions of concentrations ranging from 5 to 5000 ppb 155 was performed and the uncertainty of the analysis was estimated to be 5% (KL20). The second half of the solution was acidified to 1% with ultrapure nitric acid (HNO₃) and analysed by 156 157 Inductively Coupled Plasma-Atomic Emission Spectroscopy (ICP-AES) using a Spectro ARCOS Ametek® ICP-AES and by High-resolution Inductively Coupled Plasma-Mass Spectrometry (HR-ICP-158 MS) using a Neptune Plus™ instrument by Thermo Scientific™. The calibration curve was performed 159 using standard multi-element solutions ranging from 2 to 1000 ppb for ICP-AES and 1 to 1000 ppt for 160 HR-ICP-MS (Desboeufs et al., 2022). These analyses provided the dissolved mass concentrations 161 (Dx) of 25 water-soluble metals and metalloids, including Fe, Al, and Si. All sample concentrations 162

Based on those analyses, the fractional solubility (%Sx) representing the percentage solubility value was calculated as

166

163

167
$$%S_x = 100 \times D_x/T_x$$
 (2)

168

169

170

171

172

173

174

175

176

177

178179

180

181

with Dx and Tx, the dissolved and total elemental concentration respectively.

were corrected using the filter blanks for each sampling period.

2.3. Ancillary data

Maps of the emission fluxes of mineral dust were calculated using the dust emission model described by Feuerstein and Schepanski (2019), driven with hourly 10m wind fields at a 0.1° x 0.1° grid from the European Centre for Medium-range Weather Forecasts (ECMWF). The dust emission parameterisation follows Marticorena and Bergametti (1995). Additional information on the soil type was taken from the ISRC soil data set (FAO/IIASA/ISRIC/ISSCAS/JRC, 2012) and information on the aerodynamic roughness length was obtained from POLDER/ADEOS surface products following the works of Marticorena et al. (2004) and Laurent et al. (2005). The MODIS monthly vegetation product (MYD13A3 v6) was used to describe the vegetation cover, while the vegetation type was defined using the BIOME4 database (Kaplan et al., 2003). We additionally differentiated between different dust source types (alluvial fines, dunes and sand sheets) which allowed us to reflect the source diversity over Namibia and thus the spatial diversity in the soil's susceptibility to wind erosion. This layer

182 was compiled following Feuerstein and Schepanski (2019) using MODIS surface reflectance 183 (MOD09A1 v6). A MODIS retrieved map on surface water cover was used to eliminate flooded areas 184 as active dust sources. 185 Back-trajectories of the air masses during the dust event were calculated from Meso-NH model (version 5.3). The model set-up is similar to the one used for the AErosols, RadiatiOn and CLOuds in 186 187 southern Africa (AEROCLO-sA) field campaign (Formenti et al. 2019) and related case studies (Fla-188 mant et al. 2022; Chaboureau et al. 2022). In short, the model was run on a 5 km grid covering the 189 southern tip of Africa and 67 stretched levels spaced by 60 m close to the surface and 600 m at high altitude. Meso-NH was run for 24 h for each dust event using initial and boundary conditions provided 190 191 by the ECMWF operational analysis. Emission, transport and deposition of dust is described by the scheme of Grini et al. (2006). Back trajectories were computed online using three passive tracers 192 193 initialized with the 3D-field of their initial conditions. Further details on the dust prognostic scheme, the backward trajectories and the physical parameterizations are given in Chaboureau et al. (2022). 194 The presence of fog and low clouds (FLC) along the Namibian coastline during dust events was an-195 196 alysed using an existing satellite-based fog and low-cloud data set (Andersen et al., 2019). The FLC 197 detection algorithm used to create this data set was developed and validated specifically for this region. The algorithm is based on infrared observations from the Spinning Enhanced Visible and Infra-198 red Imager (SEVIRI) aboard the geostationary Meteosat Second Generation (MSG) satellites, making 199 use of both spectral and textural information. The FLC product is available at the native spatial and 200 201 temporal resolutions of the SEVIRI sensor (3 km nadir, every 15 minutes), as described in Andersen 202 and Cermak (2018). The FLC product does not specifically distinguish between fog and low clouds 203 but captures the coastal boundary-layer cloud regime typical for the region and at HBAO that could 204 interact with mineral dust. It has been shown to be consistent with synoptic-scale atmospheric dynamics (Andersen et al. 2020). The FLC data are used to calculate maps of average fog and low 205 206 cloud coverage for the time periods of all dust events given in Table 1. 207 Observations of the local meteorology, including measurements of air temperature, relative humidity and fog, at the nearby Wlotzkasbaken meteorological station (22.31°S, 14.45°E, 73 m asl, see Fig. 208 209 1) part of the Southern African Science Service Centre for Climate Change and Adaptive Land Man-210 agement (SASSCAL) ObservationNet (https://www.sasscal.org/; last accessed 14/04/2023), are 211 used.

212

213

214

3. Results

3.1. Description of the dust episodes

The dataset discussed in this paper is based on 176 aerosol samples collected at HBAO, 42 of which were associated with 10 dust episodes. As detailed by KL20, events of mineral dust were identified as peaks in the time series of the mass concentrations of Al and non-sea-salt Ca²⁺ (nss-Ca²⁺). The dust episodes investigated in this study are a subset of those presented by KL20, we therefore use their naming convention to facilitate the connections between the two papers (**Table 1**). In the following, we refer to samples collected during the dust episodes as "dust". Samples collected outside the dust events will be indicated as "background".

Table 1. Dates of dust events identified at HBAO from May to December 2017, following KL20. The number of samples collected during each episode is indicated in the column called "N". The average air temperature, relative humidity, wind speed and direction recorded at the nearby meteorological station in Wlotzkasbaken are reported. The maxima wind speed and corresponding direction are indicated in brackets in the corresponding columns. The average EDM is reported with in brackets the maximum of EDM during the event.

Episode	Start and and data (UTC)		Air tempera- ture (°C)	RH (%)	Wind speed	Wind direc-	EDM	
identifier	Start and end date (UTC)	N			(m s ⁻¹)	tion (degN)	(µg m ⁻³)	
Dust 04	19/05 09h – 20/05 18h	3	17.7	73.7	2.7 (6.2)	186 (185)	13 (14)	
Dust 05	24/05 21h – 26/05 09h	3	18.1	63.3	2.3 (6.3)	183 (188)	21 (42)	
Dust 06	11/07 09h – 13/07 09h	4	13.2	82.9	1.2 (5.4)	235 (193)	27 (45)	
Dust 07	04/08 21h - 06/08 09h	4	12.5	87.0	1.2 (5.4)	233 (201)	10 (16)	
Dust 08	17/08 21h – 19/08 09 h	4	11.9	80.6	1.3 (4.6)	324(129)	18 (21)	
Dust 09	23/09 21h – 24/09 18h	2	15.6	84.3	3.1 (6.2)	309 (330)	11 (17)	
Dust 10	05/10 21h – 08/10 09h	8	14.0	74.6	2.1 (5.9)	249 (228)	14 (23)	
Dust 11	15/11 09h – 18/11 09h	6	16.7	66.1	3.2 (11.7)	231 (232)	31 (56)	
Dust 12	30/11 09h – 01/12 18h	3	16.7	78.1	1.9 (5.7)	244 (195)	2 (3)	
Dust 13	15/12 09h – 19/12 09h	7	16.9	76.9	2.9 (6.5)	252 (238)	10 (19)	

The dust episodes were long-lasting (generally a few days). The dynamic of the emissive areas, air mass transport and fog coverage during the episodes (**Fig. S1**) is driven by the synoptic circulation, which, in southern Africa, is primarily affected by the high-pressure belt under the descending limb of the Hadley cell (Tyson and Preston-Whyte, 2014). The maps of dust emission fluxes and the air mass back-trajectories reflect this seasonality. During the first part of the year (episodes Dust 04 to 05), dust emissions originated from the gravel plains and the Etosha pan north of HBAO. During this time of the year the transport to HBAO below 300 m asl was north- to south-easterly originating inland from the coast.

From July onwards, the active source areas were identified in the southern gravel plains, Namib sand dunes and Kalahari Desert (this former only for Dust 11 to 13). Air mass transport was southerly and travelled over the sea and along the coastline. It is worth noticing that all the air masses experienced

241

242

243

244

245

246

247

248249

250

251

252253

254

255256

257

258

259

260

261

262

263264

265

266 267

268

269

maritime air during their last hours of transport, including the episodes Dust 04 and 05 associated with berg wind conditions, due to the coastal low that develops to the west of HBAO.

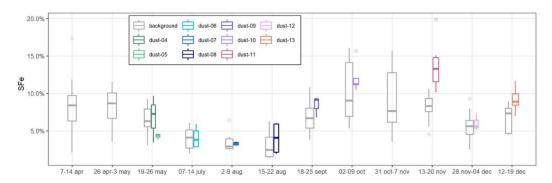
The formation of fog events at Henties Bay is also highly seasonal. The frequency of occurrence of fog events is highest during austral winter at the coast, whereas lifted stratus clouds dominate during austral summer, when overall FLC occurrence peaks. The occurrence of fog over Namibia correspond to the advection of low-level clouds which is modulated both by local meteorology along the coastline of Namibia and synoptic-scale radiative processes (Spirig et al., 2019; Andersen et al., 2019; 2020). Henceforth, as shown in Fig. S1, the presence of fog and low clouds correlates with wind directions and aerosol source regions. Overall, three episodes (Dust 04, Dust 05 and Dust 11 in April, May and November, respectively) occurred in fog-free or low-fog conditions. The remaining episodes were characterised by extensive fog and low cloud coverage throughout the study area. The meteorological observations at the nearby Wlotzkasbaken station (Fig. S2) confirm these findings, and show in particular that the relative humidity always exceeded 60 %, and 80 % when fog or low clouds were present (Table 1). As a consequence, the aerosol can be considered deliquescent even in the fog-free conditions. The seasonality is also observed in the average downwelling solar irradiance, with the lowest values during July and September, associated with austral winter. Finally, it is interesting to note that the fog-free conditions, associated with the predominance of continental air masses, corresponded to the highest estimated dust mass (EDM), possibly because of the reduced wet removal during transport and the increase of emission fluxes with the decrease of soil moisture (Kok et al., 2014), but possibly also because of the high wind speed prevailing during these conditions, which in principle, enhancing both dust emissions and transport (Table 1).

3.2. Iron solubility

The total and dissolved concentrations, and fractional solubility of Fe, Al and Si, during the dust episodes are reported in **Table 2**, where they are compared to background conditions. For iron, the average values over the entire sampling period are also shown.

Table 2. Average and standard deviations of water-soluble (Dx), total elemental (Tx) mass concentrations and fractional solubility (%Sx) for Fe, Al and Si at HBAO measured for the total period and during the dust and background events from April to December 2017. Concentrations values are expressed in ng m⁻³, while fractional solubility is expressed in percent. The numbers of considered samples is presented between the parentheses.

	Fe				Al	Si	
	All period	Dust	Background	Dust	Background	Dust	Background
Dx	28 ± 51	80 ± 84	11 ± 10	322 ± 296	56 ± 46	529 ± 616	78 ± 83
	(N=175)	(N=42)	(N=131)	(N=42)	(N=131)	(N=42)	(N=124)
Tx	364 ± 482	955 ± 633	177 ± 155	1204 ± 870	284 ± 222	4158 ± 3037	776 ± 674
	(N=176)	(N=42)	(N=133)	(N=42)	(N=94)	(N=42)	(N=133)
%Sx	7.1 ± 3.6	7.9 ± 4.1	6.8 ± 3.3	27 ± 10	26 ± 11	12 ± 7	11 ± 8
	(N=175)	(N=42)	(N=130)	(N=42)	(N=90)	(N=42)	(N=116)

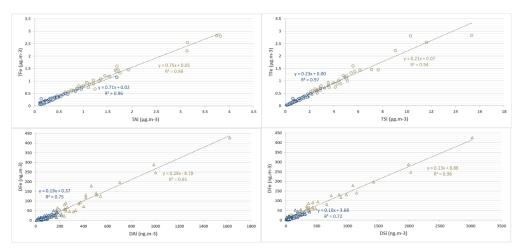


The total Fe concentrations varied significantly from one episode to the other, and so did EDM, which was larger than 10 μ g m⁻³ for all of them (except Dust 12) and as high as 56 μ g m⁻³ during Dust 11 event (Table 1). By contrast, the total Fe-to-EDM ratio was virtually constant, with an average of 5.8 % (± 0.6 %) for the dust events and 5.6 % (± 1.1%) for the entire dataset.

The total dissolved concentrations of Fe during the sampling period ranged from 1.5 to 427 ng m $^{-3}$, with a median and average of 10.5 and 28 ng m $^{-3}$. During the dust episodes, the average mass concentration of dissolved Fe was 80 \pm 84 ng m $^{-3}$, almost an order of magnitude higher than for background conditions (11 \pm 10 ng m $^{-3}$). The dissolved concentrations in dust periods are higher than those observed in the South Atlantic Ocean for air masses associated with transport from continental southern Africa (Baker et al., 2013; Chance et al., 2015; Baker and Jickells, 2017), which are of the order as those observed at HBAO for background periods.

The calculated fractional solubility of Fe ranged from 1.3 to 19.8 %, with a median and average of 6.7 and 7.1 %. The average %SFe during dust events $(7.9 \pm 4.1\%)$ was higher than in background conditions $(6.8 \pm 3.3\%)$. It is interesting to note that Dust 11 event, the most intense recorded event, presents the highest %SFe (between 10.2 and 19.8 % with an average at 13.8 %). Apart from this event, the average fractional solubility seems to be independent of the EDM. Excluding this event, the average solubility of Fe for dust event $(6.9 \% \pm 3.3 \%)$ is equivalent to the one for background samples. For both conditions, the observed range of variability is high and consistent with previous observations (2.4-20 %, Baker et al., 2013; 1.3-22 %, Chance et al., 2015), as well as with measurements over the Southern Indian Ocean (0.76-27 %, Gao et al., 2013).

The temporal variability of %SFe is presented in **Fig. 2**, where dust and background episodes are shown separately.


Fig.2: Temporal variability of %SFe average for dust and background samples during the different periods of sampling. In the box plots, the box indicates the interquartile range, i.e. the 25th and the 75th percentile, and the line within the box marks the median. The whiskers indicate the quartiles ± 1.5 times the interquartile range. Points above and below the whiskers indicate outliers outside the 10th and 90th percentile.

The temporal variability is similar during dust and background conditions. The highest %SFe occurred during austral spring (October-November), and in particular during episode Dust 11 from 13 to 20 November 2017, when the average %SFe reached 13.8 %. The %SFe was quite similar along the year between dust and background, except between 13-20 November where the iron solubilities during Dust 11 event was very superior to the one of background samples, and to a lesser extent, in September (Dust 09) and December (Dust 13).

Fig. 3 represents the correlations of Fe with Al and Si, both for the total and the dissolved concentrations.

Fig. 3. Scatterplot of TFe with respect to TAI and TSi (top panels) and DFe with respect to DAI and DSi (bottom panels) for dust (sand dots and triangles) and background events (blue dots and triangles). The Pearson coefficient are shown for both.

For both dust and background samples, the total Fe concentration is linearly correlated with total Al (R²=0.98 and 0.96, slope=0.75 and 0.71, for dust and background conditions respectively) and total Si (R²=0.94 and 0.97, slope=0.21 and 0.23, respectively). The slopes are consistent with typical Fe/Al and Fe/Si ratios found in desert dust from northern Africa (Formenti et al., 2014; Shelley et al., 2014), confirming the main crustal origin of Fe during all the sampling periods. Likewise, the concentrations of dissolved iron (DFe) show a strong linear correlation with both DAI and DSi, for both for dust and background events (R²=0.96 and 0.75 with respect to DAI and R²=0.98 and 0.73 with respect to DSi). The slopes for AI and Si are also comparable (0.19 and 0.28 for DAI and 0.10 and 0.13 for DSi, respectively in dust and in background events). A very strong linear correlation was also observed between DFe and DTi (R²=0.96 and 0.84; not shown), another unique marker of mineral dust. Significant correlations of soluble concentrations for several elements associated with mineral dust (Fe, AI,

Si, Ti) have been previously obtained in remote aerosols over ocean area (Baker et al., 2016). Additionally, DFe during dust events correlate very closely with F⁻ (R²=0.94, not shown), which has been indicated by KL20 as being emitted in the atmosphere by the wind erosion as well as the labouring of the Namibia soil, rich in fluoride mineral deposits.

327

328

338

339

340

341

342343

344

323

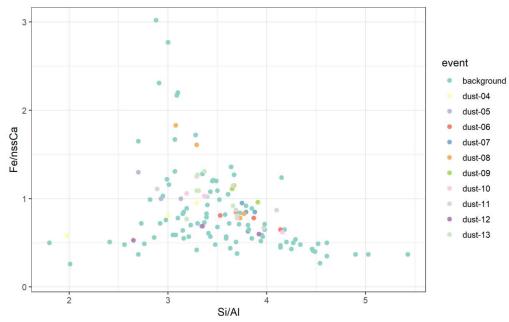
324

325

326

4. Discussion

329 Several studies have showed that variations in aerosol Fe solubility could result from the source/com-330 position of the aerosols. As a matter of fact, the Fe solubility has been linked to the iron mineralogy 331 (Journet et al., 2008) and has been shown being lower for African crustal sources than in continen-332 tal/anthropogenic sources (Desboeufs et al., 2005; Sholkovitz et al., 2009; Shelley et al., 2018). The 333 iron fractional solubility in mineral dust is also affected by source mixing (Paris et al., 2010; Desboeufs 334 et al., 2005), by (photo)chemical processing with acids or organic ligands during atmospheric 335 transport (Paris et al., 2011, Paris et Desboeufs, 2013; Wozniak et al., 2013; Swan and Ivey, 2021) 336 and by the increase of surface area to volume ratio due to size changes during transport (Baker & 337 Jickells, 2006; Marcotte et al., 2020).


In the following sections, we discuss these possible factors to explain the seasonality and the extended range of variability of the fraction Fe solubility in HBAO samples. The possible increase of surface area to volume ratio during transport (Baker and Jickells, 2006; Marcotte et al., 2020) will not be discussed because of lack of appropriate observations of the size distribution. Because of the similar transport time suggested by back trajectories (Fig.S1), it is likely that particle size distribution would be similar from one event to the other.

4.1. Influence of dust composition

345 Close to dust source, iron solubility could be mainly conditioned by the mineralogical composition of 346 dust (Journet et al., 2008, Formenti et al., 2014). Considering that soluble Fe-bearing aerosols were 347 issued from mineral dust for all the samples, the seasonality of dust emission sources (see 3.1) could 348 be a factor explaining the seasonality of %SFe (and other elements associated to mineral dust). Fig. 349 4 shows the scatter plot of the elemental mass ratio of Fe/nss-Ca²⁺ and Si/Al, previously used for 350 northern Africa dust to distinguish aerosol dust from source areas enriched in clays or iron oxides to 351 soils rich in quartz or carbonates (Formenti et al., 2014). Specific to Namibia, because of the strong link between nss-Ca2+ and fluorine, the Fe/nss-Ca2+ ratio may also to distinguish dust influenced by 352 353 fluorspar mining.

Fig 4. Scatterplot of Fe/nss-Ca²⁺ and Si/Al mass ratios for the samples collected at HBAO in period May-December 2017. Values obtained for samples collected during the dust events are represented as brown dots. Values for samples collected outside those events (background) are represented as blue dots.

Figure 4 indicates that the range of variability of both Fe/nss-Ca²⁺ and Si/Al ratios is small when considering dust events only. The elemental ratios of samples collected during the background periods are rather similar to dust events during a same sampling period, except for Si/Al for the period between 19-26 May and for Fe/nss-Ca²⁺ for the samples of 18-25 September, when significant differences, not really explicable and not inducing a significant difference in the %SFe values are observed (**Fig. S3**).

The values for ambient dust measured at HBAO are consistent with those of the previous field observations in Namibia (Annegarn et al., 1983; Eltayeb et al., 1993), but also with values reported by Caponi et al. (2017) for laboratory-aerosolised dust from two soils collected on the Namibian gravel plains. This is in agreement of the indications of the emission maps (**Fig. S1**), showing significant emissions in the gravel plains. The absence of seasonal cycle in the elemental composition illustrated in **Fig. S3** suggests that the seasonal change from northern to southern sources does not induce a change in the composition of the aerosol dust sampled at HBAO, which is consistent with the fact that the northern and the southern gravel plains of Namibia have similar mineralogy (Heine and Vökel, 2010). This suggests that the mineralogical composition of mineral dust should not be a discriminating factor explaining the seasonality of the iron solubility observed at HBAO.

4.2. Evidence of processing by marine biogenic emissions

The atmospheric (in-cloud) processing associated with secondary aerosol production may increase the fractional solubility of Fe during transport (Takahashi et al., 2011; Rodríguez et al., 2021). This has also been shown for Al and Ti (Baker et al., 2020). The chemical processing could include both acidic and ligand-promoted dissolution (Desboeufs et al., 2001, Longo et al., 2016, Tao et al., 2019). Oxalic acid has previously been used as a proxy for organic ligand-mediated iron dissolution processes because it is the most abundant species in the atmosphere and is the most effective ligand in promoting iron dissolution (Baker et al., 2020; Hamilton et al., 2021). However, several secondary compounds, such as carboxylate ligands and marine secondary products derived from dimethyl sulfide (DMS) oxidation, have been identified as playing a role in increasing the solubility fraction of iron from mineral aerosols (Johansen and Key, 2006; Paris et al., 2011; Paris and Desboeufs, 2013; Wozniak et al., 2013 and 2015). The increase of ligands-promoted dissolution is attributed to photochemical reduction of Fe(III) in Fe (II) (Siefert et al., 1994; Johansen and Key, 2006).

To investigate these aspects, the mass concentrations of the ionic compounds (oxalate, formate, MSA, NO₃-, NH₄+ and nss-SO₄²⁻) implied in the secondary aerosol production, measured at HBAO during dust and background periods are reported in **Table 3**.

Table 3. Average and standard deviations of mass concentrations of water-soluble ions measured at HBAO during dust and background events from May to December 2017. Concentrations are expressed in ng m⁻³. The number of samples pertaining to each occurrence is indicated in brackets.

	Dust	Background
nss-SO ₄ ² -	1795 ± 762 (N = 42)	1366 ± 505 (N=132)
Oxalate	$155 \pm 53 \ (N = 42)$	127 ± 35 (N = 132)
Formate	$18 \pm 6 \ (N = 40)$	16 ± 9 (N = 105)
MSA	64 ± 37 (N=36)	56 ± 36 (N=114)
NO ₃ -	205 ± 79 (N=42)	200 ± 138 (N=132)
NH_4 ⁺	192 ± 71 (N=42)	207 ± 98 (N=132)

Oxalate was the most abundant organic compound, followed by MSA, a secondary product of DMS oxidation and a unique particulate tracer of the primary marine biogenic activity (Andreae et al., 1995). On average, organic compounds were equally concentrated in dust and background events. Amongst inorganic species, nss-SO₄²⁻ was the most concentrated compound, with higher values during the dust events than during the background period.

Their detailed time series are shown in **Fig 5**, where it is compared to that of the iron fractional solubility.

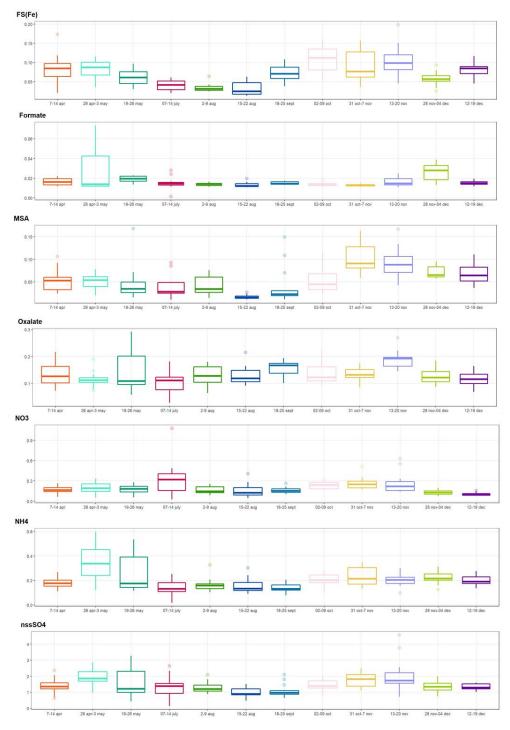


Fig. 5. Box-plots of the averages of %SFe and secondary organic and inorganic compounds mass concentrations ($\mu g \ m^{-3}$) for the sampling periods including all the samples (dust + background). Boxes and whiskers as in Fig. 2.

407

408

409

410

411

412 413

414

415

416

417 418

419

420

421

There is no clear seasonal cycle for any of the ionic compounds, with the exception of MSA, which shows a similar time variability than %SFe. MSA concentrations were lowest between May and August (average 38.0 ± 28.0 ng m⁻³), while higher concentrations were measured from September to December (72.7 ± 38.1 ng m⁻³). These differences are also observed for the dust cases only. The average MSA concentration was 40.6 ± 23.4 ng m⁻³ for Dust 04 to Dust 08 episodes. It increased to 77.7 ± 35.3 ng m⁻³, almost a factor of 2 between episodes Dust 09 and Dust 13. The mass concentrations and the seasonal cycle of MSA are related with the proximity of the strong coastal upwelling by the Benguela current (Formenti et al., 2019; KL20). The maximum concentration of MSA (106.2 ng m⁻³) was measured during episode Dust 11, which is also the time of the highest SFe% observation. This episode was also characterised by the highest oxalate, nss-SO₄² and NO₃ concentrations. Based on their temporal variability, Fig. 6 shows the correlation plot between total Fe, Al and Si, and their respective fractional solubility, the measured secondary compounds and the meteorological conditions during sampling obtained from Principal Component Analysis (PCA) for all the samples. The variables correlated in time are grouped together (the closer they are to the circle, the stronger the correlation) whereas the variables which are anti-correlated are situated on the opposite side of the plot origin.

424 425

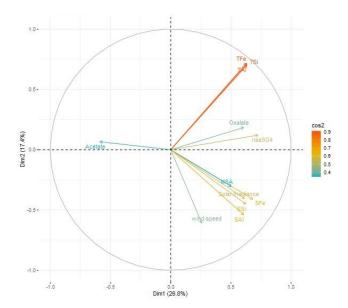


Fig 6. PCA analysis performed from the database including %SX and secondary ions concentrations. The scale(cos2) gives the factor of correlation between the different parameters. Formate, nitrate and ammonium are not visible in the plot showing that they are not correlated with the other parameters.

 The PCA correlation emphasizes the dependence between %SFe (%SAI and %SSi) and the MSA concentrations (correlation factor around 0.4), while indicating a weak dependence on oxalate, acetate and nss-SO₄²⁻. Fig. 6 also shows that %SFe is correlated with both the wind speed and solar irradiance (correlation factor higher than 0.6). While it is expected that the emission of mineral dust occurs when the wind speed is high, the correlation of %SFe with wind speed is rather surprising as both Table 1 and Fig.2 show that the %SFe is independent of the dust load. **Fig. S4** in the supplementary material shows that the wind speed is also correlated with the MSA concentrations. This is consistent with Andreae et al. (1995), who demonstrated how, in this area due to persistent phytoplankton bloom, the atmospheric concentrations of dimethylsulphide (DMS), the gaseous precursors of MSA, depend on the sea-to-air flux, in turn is determined by the concentrations in the ocean water and the surface wind speed. On the other hand, the MSA concentrations do not correlate significantly with the average solar irradiance.

As previously mentioned, Johansen and Key (2006) showed an increase of dissolution of ferrihydrite, a proxy of iron(oxy)hydroxide found in desert mineral dust, by photolysis of the Fe(III)-MSIA (methanesulfinic acid) complex, producing MSA and soluble Fe. Zhuang et al. (1992) proposed an increase of iron dissolution by the acidification of aerosol particles associated with dimethylsulphide (DMS) oxidation. Here, the link between the Fe fractional solubility, solar irradiance and MSA is in agreement with the photo-reduction dissolution of Fe by MSA condensation on Fe-bearing dust. Thus, we attribute the iron fractional solubility seasonality observed at HBAO both to solar irradiance and MSA temporal evolution via this process.

4.3. Link to other sources of iron and oxalate

The mass apportionment of iron reported by KL20 indicates that, during the dust events and the background periods, respectively, 7% and 29% of the mass of total elemental Fe was not associated to mineral dust, but rather to a factor indicated as "ammonium-neutralised component", mostly characterised by secondary species, and non-sea-salt potassium (nss-K+). Because of this association, previously reported by Andreae (1983), the "ammonium-neutralised component" was associated to photo-oxidation of marine biogenic emission but also episodically to biomass burning, which can be transported to HBAO during the Austral summertime, when the airflow becomes anti-cyclonic, and the transport of air masses laden with light absorbing aerosols has been documented (Formenti et al., 2018).

However, our data do not indicate any significant dependence of %SFe to the percent mass fraction of iron attributed to sources other than dust, notably combustion particles, which was expected in the light of previous research (e.g. Desboeufs et al., 2005; Sholkovitz et al., 2009; Shelley et al., 2018;

473

483

484 485

486 487

488

489

490

491 492

 461 Ito et al., 2021), and indeed the lowest Fe solubility (< 5%) was measured in July and August 2017,

when the contribution of polluted air masses should be highest.

463 The "ammonium-neutralised component" identified by KL20 included oxalate, the most concentrated 464 organic species at HBAO, and the strongest of the organic ligands promoting the photo-reduction of 465 iron in mineral dust, henceforth the increase of its fractional solubility (Paris and Desboeufs, 2013). 466 Surprisingly, excepted individual cases (Dust 13), our analysis does not show this strong link (Fig. 6), 467 which we explain by the fact that, contrary to the SFe%, the oxalate concentrations measured at 468 HBAO was practically constant with time, the possible pathways of oxalate formation in this complex atmosphere being numerous and occurring through the year, from natural and anthropogenic sources 469 470 (marine, heavy-oil combustion, biomass burning) and in-cloud and photo-oxidative processes (Ba-

471 boukas et al., 2000; Myriokefalitakis et al., 2011).

5. Conclusive remarks

For the first time, the fractional solubility of Fe in airborne atmospheric aerosols smaller than 10 µm in diameter is investigated along the west coast of Namibia, in southern Africa, a critical region for the global climate.

Ten intense episodes of transport of mineral dust from aeolian erosion were identified from the analysis of aerosol samples collected between May and December 2017 at the Henties Bay Aerosol Observatory (HBAO). Based on modelling and measurements, source regions were identified both in the northern and southern gravel plans. Our data do not provide any evidence of the possible contribution of dust from coastal riverbeds, which are considered to be frequent sources of atmospheric dust and soluble iron in the region. (Vickery et al., 2013; Von Holdt et al., 2017; Dansie et al., 2017a; 2017b).

Our first measurement indicate that the total iron represents, on average, $5.8 \% (\pm 0.6 \%)$ of the total dust mass, and that the average iron fractional solubility is $6.9 \% (\pm 3.3 \%)$. These values should be useful to atmospheric models estimating the dust-borne input of soluble Fe from the gravel plains in Namibia to the surrounding oceans.

The measured iron fractional solubility is comparable to values reported from shipborne measurements of transported dust in the remote southern oceanic regions (Baker et al., 2013; Chance et al., 2015, Gao et al., 2013) but significantly higher than obtained in a benchmark laboratory evaluation from the same soils and an identical dissolution protocol (*unpublished data*). The time series of fractional solubility of Fe shows an apparent seasonal cycle which is independent of dust composition. This is also the case for Al and Si.

The observations presented in this paper exclude a major role of sources other than mineral dust to play on the values and the variability of %SFe, which might be due to the location of our sampling site, remote and only occasionally affected by polluted air masses (Formenti et al., 2018).

Conversely, the seasonal increase of the iron fractional solubility is associated to that of the concentrations of MSA and correlated to meteorological parameters such as the wind speed and the surface solar irradiance. Our observations support the role of photo-chemical processes in the dissolution of Fe in our samples, and suggest that the oxidation of the marine biogenic emissions from the northern Benguela upwelling, favoured under high wind speed conditions, could play a significant role in increasing the solubility of elemental iron in mineral dust aerosols over coastal Namibian. This is in agreement with the mechanism described by Zhuang et al. (1992), who proposed an increase of iron dissolution by the acidification of aerosol particles associated with DMS oxidation, and Johansen and Key (2006), who showed an increase of dissolution of ferrihydrite, a proxy of iron(oxy)hydroxide found in desert mineral dust, by photolysis of the Fe(III)-MSIA (methanesulfinic acid) complex, producing MSA and soluble Fe. It is interesting to note that due to the high correlation between %SFe and %SAI and %SSi, the photochemical processes could also impact the solubility of all element-bearing dust. The possible mechanism suggested by this paper could be responsible for initiating a feedback loop whereby the input of dust of increased solubility would result in stronger marine biogenic emissions to the atmosphere.

In conclusion, this paper describes the very first field observations suggesting that, while airborne, the atmospheric iron from mineral dust experiences a complex and dynamic environment where the interplay between the input of atmospheric iron from transported dust and the marine biogenic emissions from the Benguela oceanic upwelling system should be further addressed by future research. This possible mechanism could increase the iron solubility in mineral dust, maybe also initiating a feedback loop whereby the input of dust of increased solubility would result in stronger marine biogenic emissions to the atmosphere. Beside sulphur species, the role of Volatile Organic Compounds (VOCs), in particular butene, massively emitted by the organisms in the coastal marine foam (Giorio et al., 2022), should also be explored.

Data availability. Original and analysed data are available at the AERIS (https://aeroclo.aerisdata.fr/project/, last accessed 20/07/2023). The statistical FactoMineR package is available in R (R version 4.1.2, 2021; http://factominer.free.fr/index_fr.html, last accessed 20/07/2023). Meteorological data from the Wlotzkasbaken station (22.31°S, 14.45°E, 73 m asl) are part of the Southern African Science Service Centre for Climate Change and Adaptive Land Management (SASSCAL) ObservationNet (https://www.sasscal.org/; last accessed 14/04/2023).

https://doi.org/10.5194/egusphere-2023-1736 Preprint. Discussion started: 22 August 2023 © Author(s) 2023. CC BY 4.0 License.

Author contributions. PF, DK, SJP, AN, MC, AF and SC prepared and performed the filter sampling.

RT, KD, PF, SC, and CMB performed the XRF, IC and ICP analysis of the collected samples. KS and

SF performed the model calculations of dust emission fluxes. JPC performed the model calculations

of air mass back-trajectories. HA and JC provided with the satellite retrieval of fog and low clouds.

PF, KD, RT and SJP analysed and interpreted the dataset. PF and KD wrote the paper with contributions from RT and SJP, and the remaining authors. PF and SJP provided funding. PF coordinated the

research activity and supervised its planning and execution.

Competing interests. PF is guest editor for the ACP Special Issue "New observations and related modelling studies of the aerosol–cloud–climate system in the Southeast Atlantic and southern Africa regions". The remaining authors declare that they have no conflicts of interests.

Special issue statement. This article is part of the special issue "New observations and related modelling studies of the aerosol–cloud–climate system in the Southeast Atlantic and southern Africa regions (ACP/AMT inter-journal SI)". It is not associated with a conference.

Acknowledgements. This work receives funding by the French Centre National de la Recherche Scientifique (CNRS) and the South African National Research Foundation (NRF) through the "Groupement de Recherche Internationale Atmospheric Research in southern Africa and the Indian Ocean" (GDRI-ARSAIO) and the Project International de Coopération Scientifique (PICS) "Long-term observations of aerosol properties in Southern Africa" (contract n. 260888) as well as by the Partenariats Hubert Curien (PHC) PROTEA of the French Minister of Foreign Affairs and International Development (contract numbers 33913SF and 38255ZE). D. Klopper acknowledges the financial support of the Climatology Research Group of North-West University and the travel scholarship of the French Embassy in South Africa (internship at LISA in summer 2018). R. Torres-Sánchez acknowledges the Postdoctoral Fellowship Margarita Alsolas (University of Huelva) funded by the Ministry of Universities of Spain (NextGenerationEU). The Southern African Science Service Centre for Climate Change and Adaptive Land Management (SASSCAL) ObservationNet (https://www.sasscal.org/) is acknowledged for open-access data provision. The authors would also like to acknowledge the support by the IPGP platform PARI for HR-ICP-MS analysis. F. Lahmidi and Z. Zeng (LISA) are acknowledged for support to the ion chromatography analysis.

References

- 561 Andersen, H. and Cermak, J.: First fully diurnal fog and low cloud satellite detection reveals life cycle in the
- 562 Namib, Atmos. Meas. Tech., 11, 5461–5470, doi: 10.5194/amt-11-5461-2018, 2018.
- 563 Andersen, H., Cermak, J., Solodovnik, I., Lelli, L. and Vogt, R.: Spatiotemporal dynamics of fog and low clouds
- in the Namib unveiled with ground- and space-based observations, Atmos. Chem. Phys., 1, 4383–4392, doi:
- 565 10.5194/acp-19-4383-2019, 2019.
- 566 Andersen, H., Cermak, J., Fuchs, J., Knippertz, P., Gaetani, M., Quinting, J., Sippel, S., and Vogt, R.: Synoptic-
- scale controls of fog and low-cloud variability in the Namib Desert, Atmos. Chem. Phys., 20, 3415-3438,
- 568 https://doi.org/10.5194/acp-20-3415-2020, 2020.
- 569 Andreae, M. O.: Soot Carbon and Excess Fine Potassium: Long-Range Transport of Combustion-Derived Aer-
- 570 osols, Science, 220, 1148-1151, doi:10.1126/science.220.4602.1148, 1983.
- 571 Andreae, M. O., Elbert, W., and de Mora, S. J.: Biogenic sulfur emissions and aerosols over the tropical South
- 572 Atlantic: 3. Atmospheric dimethylsulfide, aerosols and cloud condensation nuclei, J. Geophys. Res., 100,
- 573 11335-11356, https://doi.org/10.1029/94JD02828, 1995.
- 574 Annegarn, H.J., van Grieken, R.E., Bibby, D.M. and von Blottnitz, F.: Background Aerosol Composition in the
- 575 Namib Desert, South West Africa (Namibia), Atmos. Environ., 17, 2045–2053, doi: 10.1016/0004-
- 576 6981(83)90361-X, 1983.
- 577 Bhattachan, A., D'Odorico, P., Baddock, M.C., Zobeck, T.M., Okin, G.S., Cassar, N.: The Southern Kalahari: a
- 578 potential new dust source in the Southern hemisphere?, Environ. Res. Lett., 7, 024001.
- 579 http://dx.doi.org/10.1088/1748-9326/7/2/024001, 2012.
- 580 Bhattachan, A., P. D'Odorico, and G. S. Okin, Biogeochemistry of dust sources in Southern Africa, J. Arid En-
- viron., 117, 18-27, http://dx.doi.org/10.1016/j.jaridenv.2015.02.013, 2015.
- 582 Baboukas, E. D., Kanakidou, M., and Mihalopoulos, N.: Carboxylic acids in gas and particulate phase above
- the Atlantic Ocean, J. Geophys. Res., 105, 14459–14471, https://doi.org/10.1029/1999JD900977, 2000.
- 584 Baker A.R., T. D. Jickells, M. Witt, and K. L. Linge, Trends in the solubility of iron, aluminium, manganese and
- 585 phosphorus in aerosol collected over the Atlantic Ocean., Marine Chem., 98, 43-58,
- 586 https://doi.org/10.1016/j.marchem.2005.06.004, 2006.
- 587 Baker, A. R., and T. D. Jickells, Mineral particle size as a control on aerosol iron solubility, Geophys. Res. Lett.,
- 588 33, L17608. https://doi.org/10.1029/2006GL026557, 2006.
- 589 Baker, A. R., C. Adams C., T. G. Bell, T. D. Jickells, and L. Ganzeveld, Estimation of atmospheric nutrient inputs
- 590 to the Atlantic Ocean from 50°N to 50°S based on large-scale field sampling: iron and other dust-associated
- 591 elements, Glob. Biogeochem. Cycles, 27, 755–767, doi:10.1002/gbc.20062, 2013.
- 592 Baker, A. R., M. Thomas, H. W. Bange, and E. Plasencia Sánchez, E., Soluble trace metals in aerosols over
- the tropical south-east Pacific offshore of Peru, Biogeosciences, 13, 817–825, https://doi.org/10.5194/bg-13-
- 594 817-2016, 2016.

- 595 Baker, Alex R., et T. D. Jickells, Atmospheric deposition of soluble trace elements along the Atlantic Meridional
- 596 Transect (AMT), in The Atlantic Meridional Transect programme (1995-2016) 158: 41-51.
- 597 https://doi.org/10.1016/j.pocean.2016.10.002, 2017.
- 598 Baker, A. R., M. Li, and R. Chance, Trace metal fractional solubility in size-segregated aerosols from the tropical
- 599 eastern Atlantic Ocean, Global Biogeochemical Cycles, 34, e2019GB006510.
- 600 https://doi.org/10.1029/2019GB006510, 2020.
- 601 Bryant, R. G., Bigg, G. R., Mahowald, N. M., Eckardt, F. D., and Ross, S. G., Dust emission response to climate
- 602 in southern Africa, J. Geophys. Res., 112, D09207, doi:10.1029/2005JD007025, 2007.
- 603 Caponi, L., Formenti, P., Massabó, D., Di Biagio, C., Cazaunau, M., Pangui, E., Chevaillier, S., Landrot, G.,
- Andreae, M. O., Kandler, K., Piketh, S., Saeed, T., Seibert, D., Williams, E., Balkanski, Y., Prati, P., and
- 605 Doussin, J.-F.: Spectral- and size-resolved mass absorption efficiency of mineral dust aerosols in the
- shortwave spectrum: a simulation chamber study, Atmos. Chem. Phys., 17, 7175–7191,
- 607 https://doi.org/10.5194/acp-17-7175-2017, 2017.
- 608 Chaboureau, J.-P., L. Labbouz, C. Flamant, and A. Hodzic. Acceleration of the southern African easterly jet
- driven by radiative effect of biomass burning aerosols and its impact on transport during AEROCLO-sA, At-
- 610 mos. Chem. Phys.,22, 8639-8658, https://doi.org/10.5194/acp-22-8639-2022, 2022.
- 611 Chance R, T. D. Jickells and A. R. Baker, Atmospheric trace metal concentrations, solubility and deposition
- fluxes in remote marine air over the south-east Atlantic, Marine Chemistry, 177, 45-56, doi:10.1016/j.mar-
- 613 chem.2015.06.028, 2015.
- Dansie, A. P., G. F. S. Wiggs, D. S. G. Thomas, and R. Washington, Measurements of windblown dust charac-
- 615 teristics and ocean fertilisation potential: The ephemeral river valleys of Namibia, Aeolian Res., 29, 30–41,
- doi:10.1016/j.aeolia.2017.08.002, 2017a.
- 617 Dansie, A. P., G. F. S. Wiggs, and D. S. G. Thomas, Iron and nutrient content of wind-erodible sediment in the
- ephemeral river valleys of Namibia, Geomorphology, 290, 335-346, https://doi.org/10.1016/j.geo-
- 619 morph.2017.03.016, 2017b.
- 620 Dansie AP, Thomas DSG, Wiggs GFS, Baddock MC, Ashpole I. Plumes and blooms Locally-sourced Fe-rich
- 621 aeolian mineral dust drives phytoplankton growth off southwest Africa. Sci Total Environ., doi: 10.1016/j.sci-
- 622 totenv.2022.154562, 2022.
- Desboeufs, K. V., R. Losno, et J. L. Colin, Factors influencing aerosol solubility during cloud processes, Atmos.
- 624 Environ., 35, 3529-3537, https://doi.org/10.1016/S1352-2310(00)00472-6, 2001.
- 625 Desboeufs, K.V., Sofikitis, A., Losno, R., Colin, J.L., Ausset, P. Dissolution and solubility of trace metals from
- natural and anthropogenic aerosol particulate matter, Chemosphere 58, 195–203, 2005.
- Desboeufs, K., Fu, Y., Bressac, M., Tovar-Sánchez, A., Triquet, S., Doussin, J.F., Giorio, C., Chazette, P.,
- 628 Disnaquet, J., Feron, A., Formenti, P., Maisonneuve, F., Rodríguez-Romero, A., Zapf, P., Dulac, F., and
- 629 Guieu, C., Wet deposition in the remote western and central Mediterranean as a source of trace metals to
- 630 surface seawater, Atmos. Chem. Phys., 22, 2309–2332, https://doi.org/10.5194/acp-22-2309-2022, 2022.

- 631 Eltayeb, M.A.; Van Grieken, R.E., Maenhaut, W. and Annegarn, H.J.: Aerosol-Soil Fractionation for Namib De-
- 632 sert Samples. Atmos. Environ., 27(5), https://doi.org/10.1016/0960-1686(93)90185-2, 1993.
- 633 Feuerstein, S., and Schepanski, K.: Identification of Dust Sources in a Saharan Dust Hot-Spot and Their Imple-
- mentation in a Dust-Emission Model, Remote Sensing, 11, doi:10.3390/rs110100004, 2019.
- 635 Flamant, C., M. Gaetani, J.-P. Chaboureau, P. Chazette, S. J. Piketh, and P. Formenti. Smoke in the river: an
- 636 Aerosols, Radiation and Clouds in southern Africa (AEROCLO-sA) case study, Atmos. Chem. Phys., 22,
- 637 5701–5724, https://doi.org/10.5194/acp-22-5701-2022, 2022.
- 638 Formenti, P., S. Caguineau, K. Desboeufs, A. Klaver, S. Chevaillier, E. Journet, J. L. Rajot, Mapping the phys-
- ico-chemical properties of mineral dust in western Africa: mineralogical composition, Atmos. Chem. Phys., 14,
- 640 10663-1068, 2014.
- 641 Formenti, P., Piketh, S. J., Namwoonde, A., Klopper, D., Burger, R., Cazaunau, M., Feron, A., Gaimoz, C.,
- Broccardo, S., Walton, N., Desboeufs, K., Siour, G., Hanghome, M., Mafwila, S., Omoregie, E., Junkermann,
- W., and Maenhaut, W.: Three years of measurements of light-absorbing aerosols over coastal Namibia: sea-
- 644 sonality, origin, and transport, Atmos. Chem. Phys., 18, 17003-17016, https://doi.org/10.5194/acp-18-17003-
- 645 2018, 2018.
- 646 Formenti, P., B. D'Anna, C. Flamant, M. Mallet, S.J. Piketh, K. Schepanski, F. Waquet, F. Auriol, G. Brogniez,
- 647 F. Burnet, J. Chaboureau, A. Chauvigné, P. Chazette, C. Denjean, K. Desboeufs, J. Doussin, N. Elguindi, S.
- Feuerstein, M. Gaetani, C. Giorio, D. Klopper, M.D. Mallet, P. Nabat, A. Monod, F. Solmon, A. Namwoonde,
- 649 C. Chikwililwa, R. Mushi, E.J. Welton, and B. Holben, The Aerosols, Radiation and Clouds in Southern Africa
- 650 Field Campaign in Namibia: Overview, Illustrative Observations, and Way Forward, Bull. Amer. Meteor. Soc.,
- 651 100, 1277–1298, https://doi.org/10.1175/BAMS-D-17-0278.1, 2019.
- 652 Gao, Y., Xu, G., Zhan, J., Zhang, J., Li, W., Lin, Q., Chen, L., and Lin, H., Spatial and particle size distributions
- of atmospheric dissolvable iron in aerosols and its input to the Southern Ocean and coastal East Antarctica,
- J. Geophys. Res., 118, 12,634–12,648, doi:10.1002/2013JD020367, 2013.
- 655 Gili, S., Vanderstraeten, A., Chaput, A., King, J., Gaiero, D. M., Delmonte, B., Vallelonga, Paola Formenti,
- 656 Claudia Di-Biagio, Mathieu Cazaunau, Edouard Pangui, Jean-Francois Doussin, Mattielli, N., South African
- dust contribution to the high southern latitudes and East Antarctica during interglacial stages, Communications
- 658 Earth & Environment, 3, 129, https://doi.org/10.1038/s43247-022-00464-z, 2022.
- 659 Ginoux, P., Prospero, J.M., Gill, T.E., Hsu, N.C., Zhao, M.: Global-scale attribution of anthropogenic and natural
- dust sources and their emission rates based on MODIS Deep Blue aerosols products, Rev. Geophys., 50,
- 661 RG3005, doi:10.1029/2012RG000388, 2012.
- 662 Giorio, C., Doussin, J.F., D'Anna, B., Mas, S., Filippi, D., Denjean, C., Mallet, M.D., Bourrianne, T., Burnet, F,
- 663 Cazanaur, M., Chikwililwa, C., Desboeufs, K., Feron, A., Michoud, V., Namwoonde, A., Andreae, M.O., Piketh,
- 664 S.J. and Formenti, P.: Butene emissions from coastal ecosystems may contribute to new particle formation,
- Geophys. Res. Lett., 49, https://doi.org/10.1029/2022GL098770, 2022.
- 666 Grini, A., Tulet, P., and Gomes, L.: Dusty weather forecasts using the MesoNH mesoscale atmospheric model.
- J. Geophys. Res., 111, D19205, https://doi.org/10.1029/2005JD007007, 2006.

- 668 Hamilton, D. S., Perron, M.M.G., Bond, T.C., Bowie, A.R., Buchholz, R.R., Guieu, C., Ito, A., Maenhaut, W.,
- Myriokefalitakis, S., Olgun, N., Rathod, S.D., Schepanski, K., Tagliabue, A., Wagner, R. and Mahowald, N.M.:
- 670 Earth, wind, fire, and pollution: Aerosol nutrient sources and impacts on ocean biogeochemistry, Annual re-
- 671 view of Marine Science, 14, pp. 303- 330, https://doi.org/10.1146/annurev-marine-031921-013612, 2021.
- 672 Heike, K and J. Volkel, Soil clay minerals in Namibia and their significance for the terrestrial and marine past
- global change, African Study Monographs, Suppl.40, 2010.
- 674 Heimburger, A., Losno, R., and Triquet, S.: Solubility of iron and other trace elements in rainwater collected on
- the Kerguelen Islands (South Indian Ocean), Biogeosciences, 10, 6617–6628, https://doi.org/10.5194/bg-10-
- 676 6617-2013, 2013.
- 677 Hooper, H., Mayewski, P., Marx, S., Henson, S., Potocki, M., Sneed, S., Handley, M., Gasso, S., Fischer, M.,
- 678 Saunders, K.M., Examining links between dust deposition and phytoplankton response using ice cores. Aeo-
- 679 lian Res., 36, 45-60, https://doi.org/10.1016/j.aeolia.2018.11.001, 2019.
- 680 Ito, A., and Kok, J. F.: Do dust emissions from sparsely vegetated regions dominate atmospheric iron supply to
- the Southern Ocean?, J. Geophys. Res., 122, 3987-4002, https://doi.org/10.1002/2016JD025939, 2017.
- 682 Ito, A., Y. Ye, C. Baldo, and Z. Shi, Ocean Fertilization by Pyrogenic Aerosol Iron. npj Climate Atmos. Sci., 4,
- 683 30, doi: 10.1038/s41612-021-00185-8, 2021.
- 584 Jickells, T., Andersen, K.K., Baker, A., Bergametti, G., Brooks, N., Cao, J., Boyd, P., Duce, R., Hunter, K.,
- Global iron connections between desert dust, ocean biogeochemistry, and climate, Science, 308, 67-71, DOI:
- 686 10.1126/science.1105959, 2005.
- 687 Journet, E., Desboeufs, K., Caquineau, S. and Colin, J. L.: Mineralogy as a critical factor of dust iron solublity,
- 688 Geophys. Res. Lett., 35, https://doi.org/10.1029/2007GL031589, 2008.
- 689 Johansen, A. M., and Key, J. M.: Photoreductive dissolution of ferrihydrite by methanesulfinic acid: Evidence of
- a direct link between dimethylsulfide and iron-bioavailability, Geophys. Res. Lett., 33, L14818,
- 691 doi:10.1029/2006GL026010, 2006.
- 692 Kaplan, J.O., Bigelow, N.H., Prentice, I.C., Harrison, S.P., Bartlein, P.J., Christensen, T.R., Cramer, W., Matve-
- yeva, N.V., McGuire, A.D., Murray, D.F., Razzhivin, V.Y., Smith, B., Walker, D.A., Anderson, P.M., Andreev,
- A.A., Brubaker, L.B., Edwards, M.E. and Lozhkin A.V.: Climate change and Arctic ecosystems: 2. Modeling,
- paleodata-model comparison and future projections, J. Atmos. Res., 108, 8171, doi: 10.1029/2002JD002559,
- 696 2003.
- 697 Kangueehi, K. I., Southern African dust characteristics and potential impacts on the surrounding oceans, PhD
- Thesis, Stellenbosch University, http://hdl.handle.net/10019.1/123923, 2021.
- 699 Klopper, D., Formenti, P., Namwoonde, A., Cazaunau, M., Chevaillier, S., Feron, A., Gaimoz, C., Hease, P.,
- 700 Lahmidi, F., Mirande-Bret, C., Triquet, S., Zeng, Z. And Piketh, S.J.: Chemical composition and source appor-
- 701 tionment of atmospheric aerosols on the Namibian Coast, Atmos. Chem. Phys., 20, pp. 15811 15833,
- 702 https://doi.org/10.5194/acp-20-15811-2020, 2020.

- 703 Kok, J. F., Albani, S., Mahowald, N. M., and Ward, D. S.: An improved dust emission model Part 2: Evaluation
- 704 in the Community Earth System Model, with implications for the use of dust source functions, Atmos. Chem.
- 705 Phys., 14, 13043–13061, https://doi.org/10.5194/acp-14-13043-2014, 2014.
- 706 Kok, J.F., Ridley, D.A., Zhou, Q., Miller, R.L., Zhao, C., Heald, C.L., Ward, D.S., Albani, S., Haustein, K.: Smaller
- 707 desert dust cooling effect estimated from analysis of dust size and abundance. Nature Geoscience, 10, 274–
- 708 278, https://doi.org/10.1038/ngeo2912, 2017.
- 709 Laurent, B., Marticorena, B., Bergametti, G., Chazette, P., Maignan, F. and Schmechtig C.: Simulation of the
- 710 mineral dust emission frequencies from desert areas of China and Mongolia using an aerodynamic roughness
- 711 length map derived from POLDER/ADEOS 1 surface products, J. Geophys. Res., 110, D18, doi:
- 712 10.1029/2004JD005013, 2005.
- 713 Lide, D. R.: CRC Handbook of Chemistry and Physics 1991–1992, CRC Press, Boca Raton, Florida, 1992.
- 714 Liu, M., Matsui, H., Hamilton, D.S., Lamb, K.D., Rathod, S.D., Schwarz, J.P. and Mahowald, N.M.: The underap-
- 715 preciated role of anthropogenic sources in atmospheric soluble iron flux to the Southern Ocean, Climate At-
- 716 mos. Sci., 5, 28, https://doi.org/10.1038/s41612-022-00250-w, 2022.
- 717 Longo, A., F. Y. Feng, B., W. M. Landing, R.U. Shelley, A. Nenes, N. Mihalopoulos, K. Violaki, E. D. Ingall.
- 718 Influence of Atmospheric Processes on the Solubility and Composition of Iron in Saharan Dust, Environ. Sci.
- 719 Tech., 50, 13: 6912-20. https://doi.org/10.1021/acs.est.6b02605, 2016.
- 720 Mahowald, N., Luo, C., del Corral, J., Zender, C.S.: Interannual variablity in atmospheric mineral aerosols from
- 721 a 22-year model simulation and observational data, J. Geophys. Res., 108 (D12),
- 722 <u>https://doi.org/10.1029/2002JD002821</u>, 2003.
- 723 Marcotte, A.R., Anbar, A.D., Majestic, B.J., Herckes, P.: Mineral dust and iron solubility: Effects of composition,
- 724 particle size, and surface area, Atmosphere, 11, 533, doi:10.3390/atmos11050533, 2020.
- 725 Marticorena, B. and Bergametti, G.: Modelling the atmospheric dust cycle: 1. Design of a soil-derived dust
- 726 emission scheme, J. Geochem. Res., 16415-16430, 1995.
- 727 Marticorena, B., Chazette, P., Bergametti, G., Dulac, F., Legrand, M.: Mapping the aerodynamic roughness
- 728 length of desert surfaces from the POLDER/ADEOS bi-directional reflectance product, Int. J. Remote Sens.,
- 729 25, 603–626, 2004.
- 730 Myriokefalitakis, S., Tsigarid is, K., Mihalopoulos, N., Scia re, J., Nenes, A., Kawamura, K., Segers, A., and
- 731 Kanakidou, M.: In-cloud oxalate formation in the global troposphere: a 3-D modeling study, Atmos. Chem.
- 732 Phys., 11, 5761-5782, doi:10.5194/acp-11-5761-2011, 2011.
- 733 Paris, R., Desboeufs, K. V., Formenti, P., Nava, S., and Chou, C.: Chemical characterisation of iron in dust and
- 734 biomass burning aerosols during AMMA-SOP0/DABEX: implication for iron solubility, Atmos. Chem. Phys.,
- 735 10, 4273–4282, https://doi.org/10.5194/acp-10-4273-2010, 2010.
- 736 Paris, R., K.V. Desboeufs, et E. Journet. Variability of dust iron solubility in atmospheric waters: Investigation of
- 737 the role of oxalate organic complexation, Atmos. Environ., 45, 6510-17. https://doi.org/10.1016/j.at-
- 738 mosenv.2011.08.068, 2011.

- 739 Paris, R., and K. V. Desboeufs, Effect of atmospheric organic complexation on iron-bearing dust solubility. At-
- 740 mos. Chem. Phys.., 13, 4895-4905, https://doi.org/10.5194/acp-13-4895-2013, 2013.
- 741 Prospero, J.M., Ginoux, P., Torres, O., Nicholson S.E. and Gill, T.M.: Environmental characterization of global
- 742 sources of atmospheric soil dust identified with the Nimbus 7 total ozone mapping spectrometer (TOMS) ab-
- 743 sorbing aerosol product. Reviews of Geophysics, 40 (1): 1002, https://doi.org/10.1029/2000RG000095, 2002.
- 744 Redemann, J., Wood, R., Zuidema, P., Doherty, S. J., Luna, B., LeBlanc, S. E., Diamond, M. S., Shinozuka, Y.,
- 745 Chang, I. Y., Ueyama, R., Pfister, L., Ryoo, J.-M., Dobracki, A. N., da Silva, A. M., Longo, K. M., Kacenelen-
- bogen, M. S., Flynn, C. J., Pistone, K., Knox, N. M., Piketh, S. J., Haywood, J. M., Formenti, P., Mallet, M.,
- 747 Stier, P., Ackerman, A. S., Bauer, S. E., Fridlind, A. M., Carmichael, G. R., Saide, P. E., Ferrada, G. A., Howell,
- 748 S. G., Freitag, S., Cairns, B., Holben, B. N., Knobelspiesse, K. D., Tanelli, S., L'Ecuyer, T. S., Dzambo, A. M.,
- Sy, O. O., McFarquhar, G. M., Poellot, M. R., Gupta, S., O'Brien, J. R., Nenes, A., Kacarab, M., Wong, J. P.
- 750 S., Small-Griswold, J. D., Thornhill, K. L., Noone, D., Podolske, J. R., Schmidt, K. S., Pilewskie, P., Chen, H.,
- 751 Cochrane, S. P., Sedlacek, A. J., Lang, T. J., Stith, E., Segal-Rozenhaimer, M., Ferrare, R. A., Burton, S. P.,
- Hostetler, C. A., Diner, D. J., Seidel, F. C., Platnick, S. E., Myers, J. S., Meyer, K. G., Spangenberg, D. A.,
- 753 Maring, H., and Gao, L.: An overview of the ORACLES (ObseRvations of Aerosols above CLouds and their
- 754 intEractionS) project: aerosol-cloud-radiation interactions in the southeast Atlantic basin, Atmos. Chem.
- 755 Phys., 21, 1507–1563, https://doi.org/10.5194/acp-21-1507-2021, 2021.
- 756 Reichholf, J. H., Is Saharan Dust a Major Source of Nutrients for the Amazonian Rain Forest?, Studies on
- 757 Neotropical Fauna and Environment, 21:4, 251-255, DOI: 10.1080/01650528609360710, 1986.
- 758 Rodríguez, S., Prospero, J.M., Lopez-Darias, J., Garcia-Alvarez, M.I., Zuidema, P., Nava, S., Lucarelli, F., Gas-
- 759 ton, C.J., Galindo, L., Sosa, E.: Tracking the changes of iron solubility and air pollutants traces as African dust
- 760 transits the Atlantic in the Saharan dust outbreaks. Atmos. Environ., 246, 118092, https://doi.org/10.1016/j.at-
- 761 mosenv.2020.118092, 2021.
- 762 Shelley, R.U., Morton, P.L., Landing, W.M., Elemental ratios and enrichment factors in aerosols from the US-
- 763 GEOTRACES North Atlantic transects. Deep-Sea Res. II, 2014.
- 764 Shelley, R. U., Landing, W. M., Ussher, S. J., Planquette, H., & Sarthou, G. Regional trends in the fractional
- 765 solubility of Fe and other metals from North Atlantic aerosols (GEOTRACES cruises GA01 and GA03) follow-
- 766 ing a two-stage leach, Biogeosciences, 15(8), 2271–2288. https://doi.org/10.5194/bg-15-2271-2018, 2018.
- 767 Sholkovitz, E.R., Sedwick, P.N., Church, T.M. Influence of anthropogenic combustion emissions on the deposi-
- 768 tion of soluble aerosol iron to the ocean: empirical estimates for island sites in the North Atlantic, Geochim.
- 769 Cosmochim. Acta, 73, 3981–4003, http://dx.doi.org/10.1016/j.gca.2009.04.029, 2009.
- 770 Siefert, R. L., S. O. Pehkonen, Y. Erel, and M. R. Hoffman, Iron photochemistry of aqueous suspensions of
- ambient aerosol with added organic acids, Geochim. Cosmochim. Acta, 58, 3271–3279, 1994.
- 772 Spirig, R., Vogt, R., Larsen, J. A., Feigenwinter, C., Wicki, A., Franceschi, J., Parlow, E., Adler, B., Kalthoff, N.,
- 773 Cermak, J., Andersen, H., Fuchs, J., Bott, A., Hacker, M., Wagner, N., Maggs-Kölling, G., Wassenaar, T. and
- 774 Seely, M.: Probing the fog life-cycles in the Namib desert, Bull. Am. Met. Soc., 100, 2491-2508,
- 775 doi:10.1175/bams-d-18-0142.1, 2019.

- 776 Swan, H.B., and J. P. Ivey, Elevated particulate methanesulfonate, oxalate and iron over Sydney Harbour in the
- 777 austral summer of 2019-20 during unprecedent bushfire activity, Atmos. Environ., 226, 118739,
- 778 https://doi.org/10.1016/j.atmosenv.2021.118739, 2021.
- 779 Swap, R., Garstang, M., Macko, S.A., et al., The long-range transport of southern African aerosols to the tropical
- 780 South Atlantic. J. Geophys. Res., 101, 23777–23791, https://doi.org/10.1029/95jd01049, 1996.
- 781 Takahashi, Y., Higashi, M., Fukurawa, T., Mitsunobu, S.: Change of iron species and iron solubility in Asian
- dust during the long-range transport from western China to Japan, Atmos. Chem. Phys, 11, 11237-11252,
- 783 doi:10.5194/acp-11-11237-2011, 2011.
- 784 Tao, Y., Murphy, J.G.: The mechanisms responsible for the interactions among oxalate, pH, and Fe dissolution
- 785 in PM_{2.5}. Earth and Space Chemistry, 3, 2259-2265, https://doi.org/10.1021/acsearthspacechem.9b00172,
- 786 2019.
- 787 Tegen, I., Schepanski, K.: The Global distribution of Mineral Dust, IOP Conference Series: Earth and Environ-
- 788 mental Sciences, 7, 012001, doi:10.1088/1755-1307/7/1/012001, 2009.
- 789 Tyson, P. D. and Preston-Whyte, R. A.: The Weather and Climate of Southern Africa, 2nd ed., Oxford University
- 790 Press Southern Africa, Cape Town, 2014.
- 791 Ventura, A., Simões, E.F.C., Almeida, A.S., Martins, R., Duarte, A.C., Loureiro, S., Duarte, R.M.B.O., Deposition
- 792 of aerosols onto upper ocean and their impacts on marine biota, Atmosphere, 12, 684,
- 793 https://doi.org/10.3390/atmos12060684, 2021.
- 794 Vickery, K.J., Eckardt, F.D.: Dust emission controls on the lower Kuiseb River valley, Central Namib, Aeolian
- 795 Res., 10, 125-133, https://doi.org/10.1016/j.aeolia.2013.02.006, 2013.
- 796 von Holdt, J.R., Eckardt, F.D., Wiggs, G.F.S.: Landsat identifies aeolian dust emission dynamics at the landform
- 797 scale, Remote Sensing Environ., 198, 229-243, https://doi.org/10.1016/j.rse.2017.06.010, 2017.
- 798 Wozniak, A. S.; Shelley, R. U.; Sleighter, R. L.; Abdulla, H. A. N.; Morton, P. L.; Landing, W. M.; Hatcher, P. G.
- 799 Relationships among aerosol water soluble organic matter, iron and aluminium in European, North African,
- and Marine air masses from the 2010 US GEOTRACES cruise, Mar. Chem., 154, 24-33 DOI: 10.1016/j.mar-
- 801 chem.2013.04.011, 2013.
- 802 Wozniak, A. S., R.U. Shelley, S.D. McElhenie, W.M. Landing, P. G. Hatcher. Aerosol water soluble organic
- 803 matter characteristics over the North Atlantic Ocean: Implications for iron-binding ligands and iron solubility.
- 804 SCOR WG 139: Organic Ligands A Key Control on Trace Metal Biogeochemistry in the Ocean 173: 162-72.
- 805 https://doi.org/10.1016/j.marchem.2014.11.002, 2015.
- 806 Zhuang, G., Z. Yi, R. A. Duce, and Brown, P.R.: Link between iron and sulphur cycles suggested by detection
- 807 of Fe (II) in remote marine aerosols, Nature, 355, pp. 537–539, https://doi.org/10.1038/355537a0, 1992.